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Abstract 

Since radiation energy fluxes can be comparable to 'convective' (Fourier) fluxes in large fossil-fuel-fired 
power stations and furnaces, we have examined particle drift Cphoresis') induced by nonuniform photon-particle 
heating in a 'host' gas. Our analysis (Mackowski. 1988) of the photophoretic velocity includes the important 'slip- 
flow' regime, and the numerical results show that photophoresis is a significant transport mechanism for micmn- 
sized absorbing particles in high radiative transfer combustion environments. with equivalent photophoretic 
diffusivities (dimensionless photophoretic velocities) being as large as 10 percent of the betler-known 
thermophoretic diffusivity (Rosner, 1980, 1985). Since pervious experimental results (Rosner and Kim, 1984) 
demonstrated that thermophoresis causes over a 3-decade increase in panicle deposition rates by convective diffusion, 
clearly, for small. absorbing panicles, photophoresis will also be an imponant contributor to observed deposition 
rates. Accordingly, we presenl mass transfer coefficients for particle transport across laminar gaseous boundary 
layers, including both particle thermophoresis and photophoresis. 

Thermophoresis and Photophoresis 

When both radiative and convective energy fluxes are present in a gas environment with a 
dilute amount of aerosol panicles, the motion of these panicles is affected by temperature gradients 
in two different ways. 

Thermophoresis describes the phenomenon wherein small particles in a gas experience a 
force in the direction opposite to the thermal gradmt in the gas. The thermophoretic velocity (it., 
the terminal velocity reached for an isolated particle in a gas with a constant temperature gradient) is 

where CXT is a dimensionless thermal diffusion factor and Dp the diffusion coefficient of the 
particles. Actually, 4 is included here just to emphasize the similarity between Tth and a diffusion 
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velocity, but the value of the thermophoretic diffusivity aTDp does not really depend on Dp 
(which, in fact, will be taken to be zero in our analysis). Talbot er af. (1980), presented an 
expression for aTDp: 

2c,v 3 + ct 1. 1 + k (A + B e - ~ d $  

PI K 
ahDP = IEp ,I[ 

(1 + 3 c, f )  1 + 2 3  + 2,,4 I KP 
where K, and Kp are the thermal conductivities of the gas and particle, respectively; 1 is the gas 
mean-free path, 1=2v/?, with C = ( ~ R T / K ) ~ / ~ ;  a is the particle radius, A=1.20, 8=0.41, G=0.88, 

and, for perfect accommodation between the particle and the gas molecules, cs=l. 17, c,=l.l and 
ct=2. 18; v is the gas kinematic viscosity. 

Note that, in the limit of Kp2Kg and accl, Eq. [ 1.21 reduces to: 
G =(A + B) I 0 . 5 6 ~  

3% 
(the numerical factor in Waldmann's theory, 1961, is 0.54). This simple limiting case provides a 
f i s t  approximation for the magnitude of abDp, and motivates our introduction of a = ahDdv  in 
the analysis and examples which follow. 

On the other hand, photophoresis takes into account the particle motion induced by the 
temperature gradient upon the particle suface originating from the nonuniform absorption of the 
radiant energy within the particle. The correspondent photophoretic velocity for an isolated particle 
can be written as 

where a@ph is the photophoretic diffusivity and q~ the radiative heat flux. Mackowski (1988) 
obtained an expression for?@, in the slip flow regime, resulting in 

2c,v51 1 + f ( ~  + B e-Gall) 
g h D p  = - - 

(1  + 3 1 + 2 4  + 2 5 )  
KP 

whereas in the free molecular limit 
aphDp = -0.14 V 51 1 

[41 

[51 
- 
J l  is the thermophoretic asymmetry factor and represents a weighted integration of the absorption 
of radiant energy over the particle volume. For spherical, homogeneous particles and 
monochromatic radiation, can be obtained from Lorenz-Mie theory as a function of the particle 
radiative size parameter x=27ta/k, where h is the radiation wavelength, and the complex index of 
refraction m=n+ik. An exact, series-expansion expressions for 71 has been derived which is 
analogous to the expressions for the radiative cross sections (Mackowski, 1988). For spectrally- 
dismbuted radiation, 71 is obtained from integration over the wavelength dismbution. 
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Realize that 71 can be positive or negative, leading to Tph directed either against or with the 
attains a incident radiation direction. For radiation absorbed entirely on the particle surface, 

minimum value of 4.5. 

Underlying Assumptions 

To simplify the problem without losing its essential features, the following defensible 
assumptions will be made: 

Al .  

A2. 

A3. 

A4. 

The flow within the BL is steady and laminar. The usual BL approximations will be 
used and self-similarity will be assumed (see, e.g., Schlichting, 1968). 
The aerosol particles are very dilute so that the prevailing velocity and temperature field 
are. not affected by their presence. 
All thermophysical properties of the gas will be considered constant and equal to the 
values for the carrier gas at mainstream conditions. Transport properties for the 
dispersed aerosol will also be taken to be constant. Lastly, the system will be 
considered effectively incompressible, Le., the density will be assumed to be constant. 
Aerosol particles do not appreciably Brownian diffuse. Therefore, at each position, the 
velocity of the particles is taken to be the gas velocity plus the thermophoretic and 
photophoretic velocities, with these velocities being those corresponding to an isolated 
particle in a uniform gas with the same temperature gradient and radiant energy flux. 
The direction of the radiative flux will be taken along the normal to the solid collecting 
surface. 

We consider the two-dimensional stagnation point (Hiemenz) flow. This corresponds to a 
steady flow which arrives from the y-axis, impinges on a flat solid wall placed at y=O, where it 
divides into two streams near the wall, leaving in both (+) directions. The external (inviscid) 
velocity disaibution in the neighborhood of the symmetrical forward stagnation "point" (at x=y=O) 
is given by (e.& Schlichting, 1968): 

u.Cxf=(-$) du ' x 
x=o 

In the immediate vicinity of the solid wall, viscous (momentum diffusion) effects become 
important and, for a Newtonian fluid, the velocity field must satisfy the well-known two- 
dimensional BL equations: 

u&+vu=u a au e+"- a*u 
ax ay e ax ay2 [71 

and au z+-=o  av 
aY [ 81 
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with boundary conditions: u=O (no slip) and v=O (no blowing) at y=O and u = uef x f at y=-, 
Introducing the "smtched" dimensionless coordinate 

and a stream function given by 

x=o 

[91 

the equation of local mass conservation [8] is automatically satisfied and the velocity components 
become 

u =  - = u f  QJ e x f ' f x q f  [111 aY 
and 

where above, and in what follows, primes denote differentiation with respect to q. Introducing 

these expressions into the x-momentum balance, equation [7], the following well-known nonlinear 
third-order (Blasius) ODE for ff q f is obtained 

f "  + ff' + [l - ( f y ]  = o  ~ 3 1  
with the boundary conditions: 

f = f = O  @ q = O  
f = 1  @ q = -  

Notice that our assumptions of constant thermophysical properties and low mass loading allow 
f( q f to be determined independently of the temperature and mass-fraction fields discussed below. 
Indeed, we will make use of the previous numerical computations of this well-known (Blasius) 
function (Schlichting, 1968). 

Temperature Field 

In the steady state, using laminar BL approximations Al ,  the PDE which governs the 
temperature distribution Tf x,y h i s  .. ~ 

aT a a2T u-+ v-= ah - 
ax  ay ay2 

a h  being the heat (thermal) diffusivity. Defining 

T, 
e , T  

when the wall temperature, T,, is held constant, the ODE for Of f becomes 

subject to the boundary conditions 
e " + P r .  f f q f e * = o  [I81 
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where Pr is the host gas handtl number, v h h .  The solution can be written in the following 
quadrature form (e.g. Spalding & Evans, 1961): 

wherefgqf isdefinedby [13]-[15] and 

For a description of the computation of 8~ see, for example, Castillo & Rosner (1988). Section 
3.1. For M . 7  (e.& air) we find 6~=2.01669. 

Particle Number Density 

Now consider that in the mainstream there are Npp. particles per unit volume, each with the 
same radius5, b. In the absence of particle coagulation or break-up, the number density of 
particles Np satisfies the equation 

did?p Np) = 0 [221 

~ 3 1  

A h + B n = O  ~ 4 1  

Under assumption A4., the local particle velocity is given by 
... 
Vp = 7 + Tph + 7 th  

with Tph and ?th given by Eq.[3] and Eq.[l], respectively. Defining n 
for n takes the simple form 

N e p . - ,  the first ODE 

where we have introduced the dimensionless functions 

with 

This assumption may easily be relaxed in order to deal with a distribution of particle sizes in the main sueam. 
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The solution of Eq.[24], with boundary condition n=l @ g=-, can be written in the form 
of a quadrature. 

The normal velocity of particles within the bouFdary layer is give; by 

which is negative for particles approaching the wall. 
Under some circumstances, the particles do not arrive to the wall and a dust free region 

appears inside the boundary layer (Goren, 1977). The separation line between the region with 
particles and the dust free zone is located at the value of where v@; that is 

A = f + l  p+ad8 = O  e l  dql 
When thermophoresis and photophoresis both push the particles away from the wall, that 

is, when 8,>1 and pc0, the dust free zone will exist for any value of and Ow and particles will 
not be collected by the solid surface. On the other hand, when both transport mechanisms compete 
in bringing particles towards the wall, the dust free zone exists only when 

-p 2a(l -ew) for p < O  ando, c 1 

% ( e w - 1 ) 2 P  for p>O and 8,>1 
6 

Note that when both transport velocities oppose each other and are exactly equal, in modulus, at 
the wall (is., when the equal sign is verified in the above inequalities), the separation line 
coincides with the wall; that is, the deposition of particles vanishes even when the particles are 
everywhere inside the boundary layer. In this very particular case, however, some deposition will 
occur due to Brownian diffusion. 

Anyway, here we are mainly interested in the cases when none of the above inequalities 
holds and deposition of particles takes place. When the particles anive to the wall, the deposition 
rate of particles is given by 

6 
or 

Thus, the dimensionless capture fraction, S ,  of particles will be 

When we are interested in mass deposition rate instead of particle deposition, the relevant 
parameter is 

i 
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where CJL is the mass fraction of particles at mainstream is the mass deposition rate at 
the wall. It is easy to see that Jm=S. When we consider the more practical case of a distribution of 
particle sizes at mainstream, the definition [33] is still valid, now with o, and jm.w taking into 
account the contribution of the differentsizes. In that case, it results in 

NJa) a3 S(a) da 

with S(a) given by [32] and n,, p and a being functions of the particle radius a. 

Results for Simultaneous Photophoresis and Thermophoresis 

Figure 1 represents the dimensionless capture fraction, S, as a function of the ratio TWIT,, 
for particles having a thermophoretic coefficient ad.5 (a value close to the free molecular limit). 
The line for p=O corresponds to pure thermophoretic deposition with negligible photophoretic 
transport. In that case, particles are captured only by cold surfaces (i.e. when T,D,<l) and the 
deposition rate increases as the wall temperature decreases. When photophoresis helps to bring the 
particles towards the surface (Le. when p>O), it  produces two effects: on one hand, it allows the 
capture of particles even for moderate hot surface (T,/T&-l) and on the other hand it considerably 
increases the value of S for a given value of the ratio TWIT,. The opposite is true for negative 
values of p, the range of temperatures over which deposition occurs is diminished as well as the 
deposition rate for a given temperature. Analogous results are obtained for a 3 . 1  (Figure 2) 
although the relative importance of photophoresis is higher. Thus, for p=-lO-*, no deposition 
occurs for the entire range of temperatures considered. 

From Eq.[28], it can be seen that 

where qF is the conductive (Fourier) heat flux at the solid surface, and F is the ratio Vph/Vlh 

computed for equal q R  and qF. For particles in the slip-flow regime (Uael), F can be expressed by 



Numerical results of F for carbonaceous char and fly-ash particles exposed to a black body 
radiation spechum at TR,d=1800K have been presented by Mackowski (1988) and are reproduced 
in Fig.3. 

By using the above expression for p together with the values of F indicated in Fig.3, the 
deposition rate of char particles has been obtained and it is represented in Figure 4 for a fixed value 
of T,Em=0.7 and different ratios of Q/*. For vanishing radiative fluxes the larger char particles 
are more efficiently captured due to their larger thermophoretic coefficient a (obtained from 
Eq.[2]). When the radiative heat flux is directed from the solid surface towards the bulk (Le., 
when qR<o), the char particles are rejected by photophoresis and the deposition rate decreases. 
For very large radiative fluxes, photophoresis precludes the capture of char particles larger than a 
given size. 

It is evident from these illustrative examples that the combination of photophoresis and 
thermophoresis induces a change in the size distribution in the mainsueam through the dependence 
of Q and p on particle size. By an appropriate combination of radiative and conductive fluxes, 
particle sizes larger than a given value can be avoided in the deposit and, for particles which 
present an extrema1 in the function F(a/l) (as it is the case for fly ash particles) only a narrow width 
of particle sizes can be selected to deposit. 
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